合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 基于界面張力消失法計算CO2-原油最小混相壓力
> 表面張力為35.5 mN m?1可提高水凝膠涂層仿生水下非粘著超疏油性能
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——結果與討論、結論
> 如何降低不同結構的延展型表面活性劑的界面張力
> 泡沫形成的原理是什么?陰離子表面活性劑為何可以作為起泡劑?
> 生物表面活性劑產生菌菌體密度、細胞疏水性與發酵液pH及表面張力的關系(二)
> 不同有機溶劑對離子液體密度、表面張力和導熱系數的影響
> 各種表面活性劑性能大全
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(四)
> 糖基陽離子型雙子表面活性劑復配酸化壓裂用助排劑,可降低表面張力、快速返排
十二烷基硫酸鈉、水楊酸丁酯流動驅動自推進界面張力和表面流速測量
來源: 竹子學術 瀏覽 358 次 發布時間:2023-05-29
在自推進系統的運動機制分析中,經常考慮施加到物體上的界面張力的不平衡力。然而,界面張力的不均勻分布也會引起馬蘭戈尼流動,這些流動也有助于通過粘性力進行自推進。這種流動的貢獻尚未被直接觀察到,但已在一些系統中測量了界面張力差異。
本研究利用準彈性方法同時測量了十二烷基硫酸鈉(SDS)水溶液上圓形通道中水楊酸丁酯(BS)液滴單向自推進運動的界面張力和表面流速。激光散射法。還通過觀察紫外光激發的熒光來記錄液滴位置。通過改變共溶解在SDS水溶液中的初始BS濃度來測量界面張力和表面流速對BS液滴速度的依賴性。
圖1(a)用于研究自驅動液滴和QELS測量的實驗安排概述。BS代表分束器,其透射率/反射率之比為90:10。(b)60 mM SDS溶液上移動的自驅動液滴和測量點的重疊熒光圖像。
圖2(a,b)液滴速度、平衡界面張力(空氣/液體)和初始BS濃度之間的關系。(c)結果(a,b)中液滴速度與平衡界面張力(空氣/液體)之間的關系。
圖3是選定時間范圍內液滴位置、界面張力和表面流速的時間分辨測量的代表性結果(初始BS濃度:0μM)。
圖4是液滴周圍界面張力(上)和表面流速(下)的代表性空間分布[初始BS濃度:(a,e)0μM,(b,f)20μM,(c,g)30μM,和(d,h)50μM]。
圖5是液滴速度與(a)液滴前后部之間的界面張力差、(b)向前流動速度(實心圓圈)和(c)向后流動速度(空心圓圈)的關系。水平虛線表示零,虛線表示液滴速度與前進流速相同時的情況。
圖6是描述BS液滴自推進的簡化模型。紅色箭頭所示的γf和γb分別代表液滴前部和后部界面張力所產生的力的大小。用藍色箭頭繪制的τf和τb分別代表來自向前和向后界面流的粘性力。綠色箭頭表示液滴下方的流動,vb、vd和vf表示液滴下方每個x位置處的流速。假設τb和vb具有負值,因為它們處于液滴運動的相反方向。
圖7是計算出的比例α與液滴速度之間的關系。
圖8是(a)液滴前面的系統界面張力的最大值(實心圓)和液滴前面的外推界面張力(空心圓)作為前端流速的函數。(b)上述最大值和前沿值之間的界面張力差與前沿流速的關系。(c)前沿流速與前沿界面張力梯度之間的關系。
結果,當液滴通過時間分辨測量的采樣位置時,觀察到界面張力的周期性減小以及向前和向后流動的速度的周期性增加。當它們轉換為液滴位置的空間分布時,沒有觀察到液滴前后界面張力差對液滴速度的依賴性。另一方面,隨著液滴速度的增加,向前和向后流動的速度都增加。通過簡化模型對上述結果的分析,表明液滴前沿界面張力梯度驅動的前向流動實際上在液滴單向自推進運動機制中發揮著重要作用。