合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
陽離子、陰離子的界面潤濕行為——結論、致謝!
來源:上海謂載 瀏覽 966 次 發布時間:2020-12-13
4.結論
上述討論表明,溶菌酶的存在改變了所有三種表面活性劑的cmc,在純陽離子(即CTAB)和陰離子(即SDBS)表面活性劑以及溶菌酶存在的情況下,cmc值隨溫度升高而增加。 在非離子表面活性劑(即TX-100)的情況下,cmc值降低。 如果使用離子表面活性劑,與CTAB相比,SDBS的Γmax值下降更多,這表明SDBS和溶菌酶之間形成的復合物比CTAB和溶菌酶更有利。 Amin值以與Γmax相反的趨勢增加。TX-100的Gmin值較小,這表明TX-100在溶菌酶存在的情況下強烈吸附在表面上。 關于接觸角的結果表明,在溶菌酶存在下,非離子表面活性劑(TX-100)比離子表面活性劑(SDBS/CTAB)對PMMA的潤濕性更強。
致謝
Rajan Patel博士非常感謝印度新德里科學與工程研究委員會和大學資助委員會的財政支持,批準令編號分別為SB/EMEQ-097/2013和F.39-841/2010(SR)。 Abbul Bashar Khan博士還感謝新德里科學和工程研究委員會(SEB)提供了第號批準令(SB/FT/CS-031/2013)的研究資助。
工具書類
[1] Lee-Huang S., Huang P., Sun Y. et al.: Proc. Nat. Acad. Sci. U.S.A., 1999, 96, 2678.
[2] Jash C., Payghan P., Ghoshal N. et al.: J. Phys. Chem. B, 2014, 118, 13077.
[3] Huang S., Maiorov V., Huang P. et al.: Biochemistry, 2005, 44, 4648.
[4] Derdea M., Naua F., Guerin-Dubiarda C. et al.: Biochim. Biophys. Acta, 2015, 1848, 1065.
[5] Carrillo W., Garcia-Ruiz A., Recio I. et al.: J. Food Protect., 2014, 10, 1732.
[6] Goddard E.: Interactions of Surfactants with Polymers and Proteins. CRC Press, 1993.
[7] Howarter J., Genson K. and Youngblood J.: Appl. Mater. Inter., 2011, 3, 2022.
[8] Kosior D., Zawala J., Niecikowska A. et al.: Colloids Surfaces A, 2015, 470, 333.
[9] Szymczyk K., Zdziennicka A. Janczuk B. et al.: J. Colloid Interface Sci., 2006, 293, 172.
[10] Szymczyk K., Zdziennicka A. and Krawczyk J.: Appl. Surf. Sci., 2014, 288, 488.
[11] Szymczyk K., Zdziennicka A. and Janczuk B.: Mater. Chem. Phys., 2015, 162, 166.
[12] Paria S., Biswal N. and Chaudhuri R.: Soft Matter: Synth., Proc., Products, 2015, 61, 655.
[13] Zdziennicka A., Janczuk B. and Wojcik W.: J. Colloid Interface Sci., 2005, 281, 465.
[14] Hobett T. and Schway M.: J. Biomed. Mater. Res., 1988, 22, 751.
[15] Liu Y., Huglin M., Mao R. et al.: Polymer, 1996, 37, 5069.
[16] Muratore L. and Davis T.: J. Polym. Sci. A, 2000, 38, 810.
[17] Peppas N., Huang Y., Lugo M. et al.: Ann. Rev. Biomed. Eng., 2000, 2, 9.
[18] Das N., Pawar L., Kumar N. et al.: Chem. Phys. Lett., 2015, 635, 50.
[19] Hierrezuelo J., Nieto-Ortega B. and Ruiz C.: J. Lumin., 2014, 147, 15.
[20] Misra P., Dash U. and Maharana S.: Colloids Surf. A, 2015, 483, 36.
[21] Ruiz-Pena M., Oropesa-Nunez R., Pons T. et al.: Colloids Surf. B, 2010, 75, 282.
[22] Kumari M., Maurya J., Tasleem M. et al.: J. Photochem. Photobiol. B, 2014, 138, 27.
[23] Kresheck G. and Franks F.: Water. Plenum, New York 1975.
[24] Menguro K., Takasawa Y., Kawahashi N. et al.: Colloid Interface Sci., 1981, 83, 50.
[25] Kabir-ud-Din, Rub M. and Naqvi A.: J. Phys. Chem. B, 2010, 114, 6354.
[26] Rub M., Asiri A. and Naqvi A.: J. Mol. Liq., 2013, 177, 19.
[27] Sharma R., Mahajan S. and Mahajan R.: Fluid Phase Equilib., 2014, 361, 104.
[28] Pradines V., Kragel J., Fainerman V. et al.: J. Phys. Chem. B, 2009, 113, 745.
[29] Chattoraj D. and Biridi K.: Adsorption and Gibbs Surface Excess. Plenum, New York 1984.
[30] Rosen M., Chosen A., Dahanayaki M. et al.: J. Phys. Chem., 1982, 86, 541.
[31] Sansanwal P.: J. Sci. Ind. Res., 2006, 65, 57.
[32] Sugihara G., Miyazono A., Nagadome S. et al.: J. Oleo Sci., 2003, 52, 449.
[33] Rosen M. and Aronson S.: Colloids Surf. A, 1981, 3, 201.
[34] Rosen M.: Comparative Effects of Chemical Structure and Environment on the Adsorption of Surfactants at the L/A Interface and on Micellization[in:] Mittal K. (Ed.), Solution Chemistry of Surfactants. Plenum, New York 1979, 45-61.
[35] Rosen M., Cohen A., Dahanayake M. et al.: J. Phys. Chem., 1982, 86, 541.
[36] Chaudhuri R. and Paria S.: J. Colloid Interface Sci., 2009, 337, 555.
[37] Bogdanowa G., Dolzhikova V. et al.: Colloid J., 2003, 65, 290.