合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——討論、結論
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——結果與分析
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——材料與方法
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——摘要、前言
> 嗜熱鏈球菌發酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(三)
> 嗜熱鏈球菌發酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
> 嗜熱鏈球菌發酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(一)
> 不動桿菌菌株XH-2產生物表面活性劑發酵條件、性質、成分研究(三)
> 不動桿菌菌株XH-2產生物表面活性劑發酵條件、性質、成分研究(二)
> 不動桿菌菌株XH-2產生物表面活性劑發酵條件、性質、成分研究(一)
低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(三)
來源:油田化學 瀏覽 187 次 發布(bu)時間:2023-12-06
2.5低張力納米(mi)流體的(de)滲吸(xi)采收率
為了研(yan)究滲(shen)吸過(guo)程(cheng)中的(de)驅動力,Schechter推導了毛管數和重力比的(de)宏(hong)觀(guan)參(can)數,即反邦德數NB-1:
式中:σ—油水界面張力,mN/m;φ—多孔(kong)介(jie)質的孔(kong)隙度(du),%;K—多孔(kong)介(jie)質的滲透率,10-3μm2;Δρ—油水密度(du)差,g/cm3;H—多孔(kong)介(jie)質的高度(du),cm;C—與多孔(kong)介(jie)質的幾何尺寸有關的常數,圓(yuan)形(xing)毛細管(guan)為0.4。
NB-1為滲(shen)吸(xi)機(ji)理判別參數(shu),式中沒有考(kao)慮巖石潤(run)濕性。NB-1>5時(shi)(shi),毛管力(li)(li)在滲(shen)吸(xi)作用(yong)中起(qi)主導(dao)(dao)作用(yong);1<NB-1<5時(shi)(shi),重(zhong)力(li)(li)和毛管力(li)(li)同時(shi)(shi)起(qi)作用(yong);NB-1<<1時(shi)(shi),重(zhong)力(li)(li)起(qi)主導(dao)(dao)作用(yong)。
為驗證TPHS活(huo)性(xing)納米流體在滲吸(xi)采(cai)收(shou)率(lv)的(de)應用,采(cai)用靜態(tai)滲吸(xi)實(shi)驗開展TPHS及(ji)常(chang)見表(biao)面(mian)活(huo)性(xing)劑復配溶液滲吸(xi)效果(guo)對比(bi)研究,巖心的(de)基(ji)本(ben)物性(xing)參數見表(biao)2,不(bu)同體系與原油間的(de)界面(mian)張力、所計算的(de)反(fan)邦德數和滲吸(xi)采(cai)收(shou)率(lv)結(jie)果(guo)見表(biao)3,結(jie)果(guo)表(biao)明在滲吸(xi)過(guo)程中毛管(guan)力起主(zhu)導(dao)作用。
表2巖心物(wu)性參數
表(biao)3不同滲吸(xi)(xi)體系的滲吸(xi)(xi)采收率
親(qin)油(you)(you)(you)性巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)石發(fa)生(sheng)(sheng)滲吸(xi)的(de)(de)(de)前(qian)提(ti)條(tiao)件是(shi)潤(run)濕(shi)性反轉(zhuan),使毛管力(li)的(de)(de)(de)方向(xiang)與(yu)水的(de)(de)(de)吸(xi)入方向(xiang)相同。J-11巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)實驗(yan)(yan)中(zhong)重力(li)和毛管力(li)同時起作用(yong),放入巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)后不出(chu)(chu)(chu)油(you)(you)(you),滲吸(xi)液一直呈(cheng)渾濁狀(zhuang)態,直至(zhi)一年后才開(kai)始出(chu)(chu)(chu)油(you)(you)(you)。其(qi)余5組實驗(yan)(yan)中(zhong)毛管力(li)起主(zhu)導(dao)作用(yong),S-12巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)滲吸(xi)過(guo)程(cheng)(cheng)呈(cheng)逆向(xiang)滲吸(xi)的(de)(de)(de)特點,滲吸(xi)開(kai)始后巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)介質表面有(you)油(you)(you)(you)滴(di)(di)(di)析出(chu)(chu)(chu),油(you)(you)(you)滴(di)(di)(di)較(jiao)小并有(you)拉絲現象,油(you)(you)(you)滴(di)(di)(di)主(zhu)要(yao)集中(zhong)在(zai)側(ce)面,在(zai)12 h后巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)頂(ding)部(bu)(bu)(bu)有(you)大(da)(da)量(liang)油(you)(you)(you)滴(di)(di)(di)析出(chu)(chu)(chu),且體積較(jiao)大(da)(da)。S-1巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)滲吸(xi)過(guo)程(cheng)(cheng)中(zhong),只有(you)巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)頂(ding)部(bu)(bu)(bu)有(you)油(you)(you)(you)滴(di)(di)(di)析出(chu)(chu)(chu),油(you)(you)(you)滴(di)(di)(di)體積較(jiao)大(da)(da)。J-3巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)在(zai)滲吸(xi)過(guo)程(cheng)(cheng)中(zhong)以順向(xiang)滲吸(xi)為主(zhu),主(zhu)要(yao)是(shi)巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)頂(ding)部(bu)(bu)(bu)緩(huan)慢出(chu)(chu)(chu)油(you)(you)(you);J-16巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)在(zai)滲吸(xi)過(guo)程(cheng)(cheng)中(zhong),出(chu)(chu)(chu)油(you)(you)(you)情況與(yu)S-12巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)相似。5組活(huo)性納(na)米(mi)流體實驗(yan)(yan)中(zhong),4組實現了(le)出(chu)(chu)(chu)油(you)(you)(you)。對于(yu)親(qin)油(you)(you)(you)巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)發(fa)生(sheng)(sheng)滲吸(xi)的(de)(de)(de)前(qian)提(ti)條(tiao)件是(shi)潤(run)濕(shi)性的(de)(de)(de)改(gai)變(bian),因(yin)此實驗(yan)(yan)證明活(huo)性納(na)米(mi)流體能夠改(gai)變(bian)親(qin)油(you)(you)(you)巖(yan)(yan)(yan)(yan)(yan)(yan)(yan)心(xin)(xin)(xin)的(de)(de)(de)潤(run)濕(shi)性,最(zui)終(zhong)采收率大(da)(da)致隨著反邦德數增(zeng)加(jia)而降(jiang)低。
Zhang等通過對(dui)油水黏度(du)取幾何平均、考慮巖心大小、形(xing)狀和邊界條件,給(gei)出特征長度(du)LC的計算方法,Ma等基于(yu)特征長度(du)LC定義了無因(yin)次時間td:
式中:t—滲(shen)吸采(cai)收時間,min;K—多(duo)孔(kong)介(jie)質的(de)滲(shen)透率,μm2;—多(duo)孔(kong)介(jie)質孔(kong)隙度(du)(du),1;μw—水的(de)黏度(du)(du),mPa·s;μo—油的(de)黏度(du)(du),mPa·s;LC—巖(yan)心(xin)的(de)特征長度(du)(du),在實驗條(tiao)件下用巖(yan)心(xin)長度(du)(du)L和直徑D表(biao)示為
通過靜態滲(shen)(shen)(shen)吸(xi)實驗(yan)(yan)對(dui)比了不(bu)同滲(shen)(shen)(shen)吸(xi)配(pei)(pei)方(fang)體(ti)系(xi)在無因次時(shi)間條件下的(de)(de)滲(shen)(shen)(shen)吸(xi)采收(shou)率(lv),如圖5所示,圖中斜(xie)率(lv)越(yue)(yue)大,表(biao)(biao)明水潤濕(shi)性(xing)(xing)(xing)越(yue)(yue)強(qiang)。課題組前期研究發現,不(bu)同類型的(de)(de)表(biao)(biao)面(mian)活性(xing)(xing)(xing)劑(ji)(ji)體(ti)系(xi)的(de)(de)滲(shen)(shen)(shen)吸(xi)采收(shou)率(lv)不(bu)同,陽(yang)離(li)子雙子表(biao)(biao)面(mian)活性(xing)(xing)(xing)劑(ji)(ji)12-2-12對(dui)巖心表(biao)(biao)面(mian)油潤濕(shi),在實驗(yan)(yan)周期內不(bu)出(chu)油,1年(nian)后才(cai)出(chu)油;以兩(liang)性(xing)(xing)(xing)甜菜堿表(biao)(biao)面(mian)活性(xing)(xing)(xing)劑(ji)(ji)C12BE為(wei)主(zhu)的(de)(de)滲(shen)(shen)(shen)吸(xi)配(pei)(pei)方(fang)體(ti)系(xi)使得(de)巖心J-3表(biao)(biao)現為(wei)中性(xing)(xing)(xing)潤濕(shi);以陰非(fei)(fei)離(li)子表(biao)(biao)面(mian)活性(xing)(xing)(xing)劑(ji)(ji)TPHS和(he)AEC為(wei)主(zhu)的(de)(de)滲(shen)(shen)(shen)吸(xi)配(pei)(pei)方(fang)體(ti)系(xi)使得(de)巖心水潤濕(shi),采收(shou)率(lv)較高(gao)。以合成的(de)(de)陰非(fei)(fei)離(li)子表(biao)(biao)面(mian)活性(xing)(xing)(xing)劑(ji)(ji)TPHS為(wei)主(zhu)的(de)(de)滲(shen)(shen)(shen)吸(xi)配(pei)(pei)方(fang)體(ti)系(xi)具有最(zui)快(kuai)的(de)(de)滲(shen)(shen)(shen)吸(xi)采油速(su)率(lv)和(he)最(zui)高(gao)的(de)(de)采收(shou)率(lv)。
圖5低張力(li)納(na)米流(liu)體滲吸體系在大慶低滲天然巖心(xin)中的采收率
通過J-13巖(yan)心(xin)與(yu)S-12巖(yan)心(xin)滲(shen)吸(xi)實(shi)(shi)驗的對比(bi),由于低(di)滲(shen)巖(yan)心(xin)滲(shen)吸(xi)較(jiao)慢,在滲(shen)吸(xi)實(shi)(shi)驗的時(shi)間內(nei),納(na)米(mi)(mi)SiO2粒子的加入(ru)能(neng)夠提高(gao)采(cai)收率(lv)4.47%,其原(yuan)理是納(na)米(mi)(mi)粒子與(yu)表面活性劑的潤濕協同作用。納(na)米(mi)(mi)流(liu)(liu)體(ti)(ti)(ti)(ti)(ti)加入(ru)后滲(shen)吸(xi)采(cai)油(you)(you)速率(lv)更(geng)快。Wasam院士認為根據(ju)分離(li)(li)壓驅油(you)(you)機理,納(na)米(mi)(mi)粒子處在油(you)(you)/水(shui)/巖(yan)石(shi)三(san)相鍥(qie)形(xing)(xing)界面處,低(di)張力(li)納(na)米(mi)(mi)流(liu)(liu)體(ti)(ti)(ti)(ti)(ti)在鋪展流(liu)(liu)體(ti)(ti)(ti)(ti)(ti)邊界形(xing)(xing)成類似固體(ti)(ti)(ti)(ti)(ti)的有序組(zu)合體(ti)(ti)(ti)(ti)(ti),在本(ben)體(ti)(ti)(ti)(ti)(ti)溶(rong)液(ye)中(zhong)形(xing)(xing)成液(ye)體(ti)(ti)(ti)(ti)(ti)的分子有序組(zu)合體(ti)(ti)(ti)(ti)(ti);低(di)張力(li)納(na)米(mi)(mi)流(liu)(liu)體(ti)(ti)(ti)(ti)(ti)在油(you)(you)/水(shui)/巖(yan)石(shi)三(san)相鍥(qie)形(xing)(xing)界面處形(xing)(xing)成二(er)維層(ceng)狀(zhuang)自組(zu)裝體(ti)(ti)(ti)(ti)(ti),這(zhe)種自組(zu)裝結構(gou)形(xing)(xing)成了垂直于油(you)(you)水(shui)界面的高(gao)于納(na)米(mi)(mi)溶(rong)液(ye)本(ben)體(ti)(ti)(ti)(ti)(ti)的結構(gou)分離(li)(li)壓;納(na)米(mi)(mi)流(liu)(liu)體(ti)(ti)(ti)(ti)(ti)界面沿著油(you)(you)滴(di)和巖(yan)石(shi)剝離(li)(li)的方向移動(dong),最終使得油(you)(you)滴(di)從巖(yan)石(shi)表面脫(tuo)附。
2.6低張(zhang)力納米流體(ti)的強制(zhi)滲吸驅油實(shi)驗(yan)
采(cai)用(yong)兩組長填(tian)砂管(孔(kong)隙度(du)(du)均為45.50%,滲透(tou)率(lv)(lv)均為700×10-3μm2,含油飽和(he)度(du)(du)約60%)實(shi)驗(yan)對比了在(zai)低(di)速(su)驅(qu)(qu)(qu)替(ti)(ti)條(tiao)(tiao)件下的(de)驅(qu)(qu)(qu)油體(ti)(ti)系(xi)0.1%TPHS+0.2%AOS和(he)0.1%TPHS+0.2%AOS+0.05%納(na)(na)米(mi)(mi)(mi)SiO2的(de)驅(qu)(qu)(qu)油效(xiao)率(lv)(lv),結果(guo)見圖6。在(zai)強制(zhi)滲吸(xi)(xi)驅(qu)(qu)(qu)油過程中浮(fu)力、黏滯(zhi)力和(he)毛管力起作(zuo)用(yong);驅(qu)(qu)(qu)油過程可以描(miao)述為:初(chu)始階段(duan)是浮(fu)力起主導作(zuo)用(yong);隨(sui)著時(shi)間(jian)推移(yi),采(cai)油速(su)率(lv)(lv)降低(di)并(bing)且達到平衡,這時(shi)浮(fu)力大小與毛管力與黏滯(zhi)力的(de)和(he)相等,停止(zhi)出(chu)油。圖中的(de)含水(shui)(shui)率(lv)(lv)變化反映了油墻的(de)突破和(he)聚集;滲吸(xi)(xi)驅(qu)(qu)(qu)油實(shi)驗(yan)采(cai)用(yong)二次采(cai)油方(fang)式,在(zai)實(shi)驗(yan)條(tiao)(tiao)件相同(tong)注(zhu)入(ru)(ru)量下,加(jia)入(ru)(ru)納(na)(na)米(mi)(mi)(mi)顆(ke)(ke)粒的(de)低(di)張力納(na)(na)米(mi)(mi)(mi)流體(ti)(ti)的(de)驅(qu)(qu)(qu)油效(xiao)率(lv)(lv)為75.1%,低(di)張力表(biao)面(mian)活(huo)性(xing)(xing)劑體(ti)(ti)系(xi)的(de)驅(qu)(qu)(qu)油效(xiao)率(lv)(lv)為62.4%,納(na)(na)米(mi)(mi)(mi)顆(ke)(ke)粒加(jia)入(ru)(ru)后(hou)表(biao)面(mian)活(huo)性(xing)(xing)劑體(ti)(ti)系(xi)的(de)驅(qu)(qu)(qu)油效(xiao)率(lv)(lv)增加(jia)了12.7%;低(di)張力表(biao)面(mian)活(huo)性(xing)(xing)劑在(zai)注(zhu)入(ru)(ru)量0.27 PV時(shi)水(shui)(shui)驅(qu)(qu)(qu)前緣突破(見水(shui)(shui)),而低(di)張力納(na)(na)米(mi)(mi)(mi)流體(ti)(ti)在(zai)注(zhu)入(ru)(ru)量0.4 PV時(shi)才突破見水(shui)(shui);加(jia)入(ru)(ru)納(na)(na)米(mi)(mi)(mi)顆(ke)(ke)粒后(hou),延(yan)(yan)遲(chi)了無水(shui)(shui)采(cai)油時(shi)間(jian)。含有納(na)(na)米(mi)(mi)(mi)顆(ke)(ke)粒的(de)驅(qu)(qu)(qu)油體(ti)(ti)系(xi)的(de)采(cai)出(chu)液有明顯的(de)乳化現(xian)象,提高了驅(qu)(qu)(qu)替(ti)(ti)液的(de)流度(du)(du),納(na)(na)米(mi)(mi)(mi)顆(ke)(ke)粒和(he)表(biao)面(mian)活(huo)性(xing)(xing)劑在(zai)驅(qu)(qu)(qu)替(ti)(ti)前緣形成的(de)Pickering乳液穩定(ding)了油墻,延(yan)(yan)遲(chi)了水(shui)(shui)驅(qu)(qu)(qu)突破。
圖6低張力納米流體的強制滲吸驅油效率對比
3結論
采用“一鍋(guo)煮”法合(he)成(cheng)了一種陰非離(li)子表面活性劑TPHS,具有合(he)成(cheng)時(shi)間短、產率高的特(te)點,能夠(gou)有效降低油水(shui)界面張力,并(bing)具有優良的耐(nai)溫抗鹽能力。
陰非離子表面活性劑TPHS與(yu)陰離子表面活性劑AOS復(fu)配后,與(yu)原油間(jian)的界(jie)面張力達到更低的10-2數(shu)量級(ji),且具有更高的濁點,拓寬了應用范(fan)圍。
少量納米(mi)SiO2顆粒與TPHS、AOS復(fu)配即可(ke)產生潤濕協同作用,提高滲吸速率(lv)和采收(shou)率(lv),并(bing)能形(xing)成乳液穩定油(you)墻,延長(chang)無水采油(you)期。